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Abstract. The effect of a continuous model of correlations upon one-dimensional finite disordered quantum
wires modeled by an array of delta-potentials, is analyzed. Although the model proposed is not able to
include new truly extended states in the spectrum, the transport properties of a finite sample are noticeably
improved due to the existence of states whose localization length is larger than the system size. This
enhancement of transmission is maximized for relatively short chains.

PACS. 03.65.-w Quantum mechanics – 72.15.Rn Localization effects (Anderson or weak localization) –
73.63.Nm Quantum wires

Introduction

In a previous series of papers [1,2], the authors have ana-
lyzed in detail a simple model describing the main features
shown by a one-dimensional quantum wire. The potential
consists of an array of delta potentials, a pattern which has
been extensively considered (and indeed it is nowadays) in
the literature [3]. In reference [1] the band structure was
fully analytically solved when the structure is periodically
arranged and the density of states together with the local-
ization properties were described in the random case, for
which several novel features such as the fractal structure of
the DOS were reported. In reference [2] the random model
was extended to include statistically correlated disorder
in a very natural manner. The effects of the correlations
upon the properties of the system in the thermodynamic
limit were studied, however the question of whether that
type of correlations changes or not the transport proper-
ties of real finite structures was left open, and this is the
subject of the present work. The presence of a correlated
disorder in a one-dimensional random system can strongly
change its physical properties, by including new resonant
extended states in the case of short-range correlations [4],
or with the emergence of mobility edges for the carriers
when long-range correlations appear [6]. The importance
of these correlation phenomena has also been established
for two-dimensional structures [7].

The paper is organized as follows. In Section 1, we
briefly review the model focusing on the description of
the binary disordered chain and the techniques used to
analyze the transport properties. In Section 2 a large
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amount of results is presented together with a discussion
about the effects observed, to close finally with a section
of Conclusions.

1 Review of the model

Let us briefly review the basic features of the 1D model
proposed. For a detailed description see references [1,2].
The wire is modeled by a linear array of equally spaced
delta potentials with different couplings following a ran-
dom sequence. In the completely random case, the prop-
erties of the system are then determined by the couplings
(a/ai) of the species composing the chain and their con-
centrations {ci}. The density of states and the localiza-
tion of the electrons can be studied in the thermodynamic
limit by making use of the functional equation formal-
ism. It is also possible to introduce short-range correla-
tions in the structure, modifying the probability of differ-
ent atomic clusters to appear in the wire sequence. This
can be done by considering an additional set of probabili-
ties {pij} obeying certain equations, where pij means the
probability for an i-atom to be followed or preceded by a j-
atom. Thus the frequency of appearance of binary atomic
clusters can be altered by this quantities. The probability
of finding at any position the couple −ij−(−ji−) would
be cipij or equivalently cjpji. Then in the thermodynamic
limit the physical properties of such a system will depend
upon the couplings of the species, the concentrations, and
the probabilities {pij}. This correlated model naturally in-
cludes the situation when the disorder in the wire is com-
pletely random, that is just defined by the values pij = cj .
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Fig. 1. (color online) Correlation space for 2 species as a func-
tion of the concentration. (a) p12 vs. c1, (b) optimal represen-
tation: if c1 ≤ 0.5 then p12 vs. c1, if c1 > 0.5 then p21 vs. c1.
The blue dashed line corresponds to the completely random
configurations.

In this work only binary chains are considered, so let
us study in detailed the correlation scheme for this case.
Our wire will be determined by one of the concentra-
tions {c1, c2} and one the probabilities {p11, p12, p21, p22},
that satisfy the relations p11 + p12 = p22 + p21 = 1 and
c1p12 = c2p21. One usually takes as configuration parame-
ters c1 ≤ 1 and p12 ≤ min{1, c2/c1}. The allowed configu-
ration space with these parameters is shown in Figure 1a.
However one can optimize the representation of this space
by choosing the parameters {c1, p12} when c1 ≤ 0.5 and
{c1, p21} when c1 > 0.5, so that the configuration space
is expanded and the spatial points can be better differ-
entiated, as shown in Figure 1b. Therefore, for a given
concentration different values for p12(p21) can be chosen,
and only one of them corresponds to the completely ran-
dom chain. When the configuration of the binary chain
lies on the dashed lines of Figure 1, we have a completely
random chain whereas if the configuration lies anywhere
else we have a correlated chain.

The main aim of this work is to elucidate whether or
not this type of short-range correlations can improve the
transport properties of real finite systems. With this pur-
pose the following techniques are used, in contrast with
the ones used in [1,2] for treating infinite systems.

1.1 Transmission matrix formalism

The time-independent scattering process in one-dimension
can be described using the well-known continuous transfer
matrix method [8]. The transmission matrix for a delta

potential preceded by a zero potential zone of length a
can be easily calculated yielding,

Mj(k) =




(
1 − i

kaj

)
eika − i

kaj
e−ika

i
kaj

eika
(
1 + i

kaj

)
e−ika


 (1)

where aj = �
2/(mαj) means the “effective range” of the

jth delta, being αj its coupling. The composition of N
potentials can then be considered through the product of
matrices,

M = MN . . .M2M1 (2)

to obtain the global transmission from T (k) = |M22|−2.
This formalism can be numerically applied to consider
large chains but one finds also that for delta potentials
it is possible to write analytical closed expressions for the
scattering amplitudes of a chain composed of N different
units [9].

Once the transmission of the finite sample has been
calculated, the inverse of the localization length of the
electronic states can be characterized by the Lyapunov
exponent via the expression [10,11]

λ(k) = − 1
2N

log T (k). (3)

2 Results

The effects of the correlations upon the system at the
thermodynamic limit were extensively analyzed in refer-
ence [2]. The authors concluded that the density of states
is drastically changed by the effect of correlations. For
a wire with fixed concentrations, the correlations can be
tuned to open or close gaps in the spectrum, and they alter
the number of available states at a certain energy as well
as the smooth or irregular evolution of the DOS. Con-
cerning the spatial extension of the electron wave func-
tions, the influence of the correlations on the localization
properties was established. An important change on the
localization length was observed for all energies. The value
of the Lyapunov exponent could be greatly decreased for
some energies at the expense of an increasing behaviour
in other ranges. However this type of correlations does not
cause the appearance of neither new resonant energies nor
mobility edges for the carriers. The question of whether
these correlations might change the transport properties
of a finite system was left open.

Let us have a look at the transmission patterns of fi-
nite binary chains for different configurations of concen-
trations and correlations. In Figures 2 and 3 the transmis-
sion is shown for several chains composed of 1000 atoms,
for different values of the couplings and concentrations.
In these cases the worst transmission corresponds to the
completely random configurations, for which the trans-
mission probability only raises near the multiples of π due
to the well known resonances of the model at these ener-
gies. However as we move away from the completely ran-
dom configuration (above or below the dashed line) the
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Fig. 2. Transmission probabilities vs. energy for 1000 atoms bi-
nary disordered chains with couplings (a/a1) = 1, (a/a2) = −1
and concentrations c1 = 0.4, c2 = 0.6 for different correlation
configurations. From top to bottom p12 = 0.6, 0.1, 1.0. The
circular point inside the insets mark the configuration on the
correlation space. Only one realization of the disorder has been
considered for each case.

transmission is noticeably improved. Notice that this im-
provement is not necessary localized around the multiples
of π. Although quantitatively this enhancement depends
on the values of the couplings, qualitatively it seems a
generic behaviour. In order to check whether this effect
can be extended over the whole correlation space, we char-
acterize each of its points by an efficiency of transmission
defined as,

Teff =
1

k2 − k1

∫ k2

k1

T (k)dk (4)

which is the area enclosed by the transmission coefficient
per energy unit. This definition depends on the integra-
tion interval, but qualitatively the results will not be af-
fected as long as a reasonable interval is chosen, generally
one of the form [0, k2]. Notice that for very high energies
the transmission will saturate for all configurations, thus
the contribution to the integral in (4) will be the same
independently of the c1, p12 values. We are interested in
establishing a qualitative comparison of this efficiencies
for different correlations.

For certain values of the couplings and a length of
1000 atoms the evolution of this transmission efficiency
over the configuration space is shown in Figure 4. It is
clearly shown that the lowest values for the transmis-
sion efficiency are distributed around the completely ran-
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Fig. 3. Transmission probabilities vs. energy for 1000 atoms
binary disordered chains with couplings (a/a1) = 2, (a/a2) =
4 and concentrations c1 = c2 = 0.5 for different correlation
configurations. From top to bottom p12 = 0.5, 0.1, 0.85. The
circular point inside the insets mark the configuration on the
correlation space. Only one realization of the disorder has been
considered for each case.
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Fig. 4. (color online) Transmission efficiency for different con-
figurations of a binary chain with 1000 atoms and couplings
(a/a1) = 1, (a/a2) = −1. For each configuration only one re-
alization of the disorder has been considered. The integration
interval for Teff was [0, 15].

dom configurations, specially when the participation of
the species is homogenized (c1 ∼ 0.5). High efficiencies
can be observed for low and high concentrations of one
of the species (and therefore approaching a pure chain)
and around the point {c1 = 0.5, p12 = 1.0} which cor-
responds to the periodic binary chain. Nevertheless by
looking at the evolution of Teff as a function of p12 for
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Fig. 5. (color online) Teff vs. p12 for 1000 atoms binary chains
with couplings (a/a1) = 1, (a/a2) = −1 and different concen-
trations. The squares on the lines mark the position of the
completely random configuration.
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Fig. 6. (color online) Lyapunov exponent vs. energy for a bi-
nary chain with parameters (a/a1) = 1, (a/a2) = −1, c1 = 0.4,
p12 = 0.6. The blue line corresponds to a 1000 atoms realiza-
tion and the red line to the infinite chain.

a fixed concentration (Fig. 5) we conclude that the min-
imum efficiency is reached near the completely random
configuration and the correlated situations show notice-
ably higher values. Therefore the electronic transmission
through a finite wire is improved by this type of corre-
lations although truly extended states do not appear in
the system. The reason for the improvement then must be
the existence of states behaving as extended states, that is
their localization length being larger than the system size.
Let us analyze the behaviour of the Lyapunov exponent.
In Figure 6 the Lyapunov exponent as a function of the en-
ergy is shown for a random chain. We can see a very good
agreement between the thermodynamic limit and the fi-
nite realization of the disorder, that shows a characteristic
fluctuating behaviour around the values of the former one.
These fluctuations are responsible for the enhancement of
transmission. A fine observation of the Lyapunov expo-
nent, in Figure 7, reveals that for a chain with fixed con-
centrations the number of states whose localization length
exceeds the sample length increases dramatically in a cor-
related configuration with respect to the completely ran-
dom situation. The correlations induce a decrease of the
limiting distribution of the Lyapunov exponent in certain
energy ranges, so that for a finite system the fluctuations
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Fig. 7. (color online) Lyapunov exponent vs. energy for a
1000 atoms binary chain with couplings (a/a1) = 1, (a/a2) =
−1 and concentration c1 = 0.4 for (a) completely random con-
figuration p12 = 0.6 and (b) correlated configuration p12 = 0.1.
The dashed line marks the inverse of the length of the sam-
ple. The red line shows the Lyapunov exponent for the infinite
chain.

of this quantity around its mean value make the appear-
ance of such states possible. Let us notice that the decreas-
ing of the limiting value of the Lyapunov exponent does
occur in different energy ranges depending on the parame-
ters of the chain so that the improvement of the transmis-
sion can take place in different energy intervals because
the appearance of states whose localization length (Lloc)
is larger than the length of the system (L) is not restricted
to the vicinity of the resonances located at the multiples
of π. This is in sharp contrast to other short-range cor-
related models such as the random dimer [4,5], which is
able to improve the transport in finite systems [12] in a
similar manner but the states with Lloc > L always ap-
pear around a resonant extended state (Lloc = ∞). Let
us remark that although the fluctuating pattern is a fin-
gerprint of the particular realization of the disorder, the
amplitude of these oscillations does only depend upon
the length of the system. Therefore the results are not
due to particular bizarre realizations of the disorder for a
given length. The behaviour described can be clearly ob-
served in all realizations of a certain configuration. The
fluctuations of the Lyapunov exponent for finite chains
are quantified through the variance var(λ) that according
to the central limit theorem must decrease asymptotically
with the length of the system as L−1 [13]. This asymp-
totic behaviour of the Lyapunov exponent can be checked
in Figure 8 where the evolution of the variance with the
length of the system is analyzed for different localization
lengths corresponding to different configurations. For a
certain value of the energy and the correlations the local-
ization length is obtained from the Lyapunov exponent in
the thermodynamic limit λ∞ (calculated with the method
described in Ref. [2]). Then, different realizations of the
disorder for different lengths are considered for calculating
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Fig. 8. (color online) Evolution of the fluctuations of the
Lyapunov exponent versus the length of the system for a binary
chain with parameters (a/a1) = 1, (a/a2) = −1 and concen-
tration c1 = 0.4. The variance times the length of the system
divided by the value of the Lyapunov in the thermodynamic
limit (λ∞) is plotted for different energies and correlations.
For each length the variance is obtained after averaging over
5 × 104 realizations of the disorder.

the variance of the Lyapunov var(λ) = 〈λ2〉 − λ2∞ where
the average is taken over 5 × 104 realizations for each
length. The plot var(λ)L/λ∞ versus L/Lloc ≡ Lλ∞ clearly
shows a saturation when L � Lloc in all the cases con-
sidered. The asymptotic value reached depends of course
on λ∞ and the distribution of these asymptotic values for
different λ∞ must necessarily be related to the single pa-
rameter scaling theory [14]. This theory originally estab-
lishes that in the localized regime (Lλ∞ � 1) the variance
of the Lyapunov exponent (LE) scales with the length of
the system according to the limiting value of the LE itself,
so that the distribution of the variance for different val-
ues of the LE (i.e. different values of the energy) satisfies
τ ≡ var(λ)L/λ∞ ∼ 1. However the regime in which the
single parameter scaling works is still controversial and
new expressions for τ and new scales for the validity of
SPS have recently appeared [15]. Also the exact value of
τ seems to depend on the model and the type of distribu-
tions considered. It would be very interesting to check the
applicability of SPS for this correlated model. However
this task deserves a thorough and deep analysis [16].

It must then be clear that taking averages of the
Lyapunov exponent over several realizations kills its fluc-
tuating behaviour since that procedure is intended to ap-
proach the thermodynamic limit. And on the other hand
averaging the values of the efficiency of transmission over
several realizations for a given length will not have any
effect on the results presented, according to the previous
discussion.

As expected for a model of short-range correlations, all
the effects disappear unavoidably in the thermodynamic
limit. Thus as the length of the chain grows the fluctu-
ations of the Lyapunov exponent decrease and the local-
ized character of the electronic states naturally manifests
itself for all energies (Fig. 9). The lost of the enhance-
ment of transmission can also be shown as a function of
the evolution of Teff over the configuration space for dif-
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Fig. 9. (color online) Lyapunov exponent vs. energy for a bi-
nary chain with couplings (a/a1) = 1, (a/a2) = −1 in a cor-
related configuration c1 = 0.4, p12 = 0.1 for 104 atoms. The
dashed line marks the inverse of the length of the sample. The
red line corresponds to the infinite chain. To be compared with
Figure 7b.
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Fig. 10. (color online) Transmission efficiency over config-
uration space for a binary chain with couplings (a/a1) =
1, (a/a2) = −1 for different lengths: L = 500 (top) and
L = 2000 (bottom).

ferent lengths. The higher the number of atoms the more
the black zones spread from the completely random lines
(Fig. 10). However the decay of the transmission efficiency
with the length of the system depends upon the corre-
lations. In Figure 11 it can be seen how the fastest de-
creasing corresponds to the completely random situation,
whereas the correlated chains show always higher efficien-
cies for all lengths. Plotting for different configurations
∆Teff = Teff − Teff(R) as a function of the length, where
(R) means the completely random situation, we see how
the effect of the correlations reaches a maximum which is
roughly contained in the region L ∼ 200−500, apparently
independent of the values of the species couplings.
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Fig. 11. (color online) Transmission efficiency vs. length for
different configurations of a 1000 atoms binary chain with pa-
rameters (a) (a/a1) = 1, (a/a2) = −1, c1 = 0.4 and (b)
(a/a1) = 2, (a/a2) = 4, c1 = 0.5. (R) marks the com-
pletely random situation. The inset shows the relative differ-
ences ∆Teff = Teff − Teff(R).

3 Conclusions

To summarize, we have analyzed in detail the effect of a
model of correlations proposed in [2], on finite disordered
wires. The improvement of the transport properties has
been established, not only by looking at the transmission
coefficient of particular chains, but also in the whole corre-
lation space of a binary array through the transmission ef-
ficiency. For fixed concentrations the electronic transport
reaches its minimum intensity near the completely ran-
dom configuration, whereas the correlated situations show
noticeably higher transmission efficiencies. The enhance-
ment of the transport properties is due to the appearance
of states with a localization length larger that the sys-
tem size that effectively behave as extended states. As the
length of the system grows the effect of these short-range
correlations disappears, and the transmission decreases.
The fastest decay corresponds to the completely random
situation. The effect of the correlations as a function of
the length reaches a maximum for relatively short chains
L ∼ 200 − 500.

We believe that the behaviour described is essentially
independent of the potential model and that the same
effects could be observed for other models such as the

tight-binding scheme or for square barriers, as well as for
the case where more species are included in the wire. Let
us finally remark that although the correlation model con-
sidered is not able to include any new truly extended state
in the spectrum, its effects upon the transport of real fi-
nite samples are absolutely non-negligible and they may
be significant in certain experimental devices such as for
example superlattices, which have already been used to
observe the effect of other models of short-range correla-
tions [12].

We acknowledge with thanks the support provided by the
Research in Science and Technology Agency of the Spanish
Government (DGICYT) under contract BFM2002-02609.

References
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